
Commutative Algebra Atiyah-MacDonald

1 Chapter 1

1.1 Rings, Ideals, Radicals

1. (AM Ex. 1). Let x 2 A nilpotent and u 2 A unit.

(a) Show that x+ u is a unit.

(b) Let I ideal of A contained in the nilradical and prove that if u 2 A is such that
u 2 A=I is a unit, then u itself is a unit in A:

2. (AM Ex. 2). Let f = a0 + a1x+ � � �+ anxn 2 A[x]. Prove that

(a) f is a unit of A[x] if and only if all the coe¢ cients but the constant term are
nilpotents of A and the constant term is a unit of A.

(b) f is nilpotent if and only if all the coe¢ cients are nilpotent.

(c) f is a zero-divisor if and only if f is annihilated by a nonzero element of A.

(d) f is primitive if its coe¢ cients generate the unit ideal. Prove that a product is
primitive if and only if its coe¢ cients are primitive.
(Note: if the ring A is a unique factorization domain, the word �primitive" has a
slightly di¤erent meaning: in that context it means the coe¢ cients do not have
a nonunit common factor. The two meanings coincide if the ring is a principal
ideal domain.)

3. (AM Ex. 4). Show that in A[x], the Jacobson radical and nilradical are equal.

4. (AM Ex. 6). A ring A has the property that every ideal not in the nilradical contains
a nonzero idempotent (i.e. an element x such that x2 = x). Prove that the nilradical
and Jacobson radical of A coincide.

5. (AM Ex. 7). Let A be a ring.

(a) Show that if all x 2 A satisfy xn = x for some n > 1 (depending on x) then
every prime ideal of A is maximal.

(b) Is the converse true? Prove or give counterexample.

6. (AM Ex. 8). Let A be a nonzero ring. Show that the set of all prime ideals has
elements that are minimal with respect to inclusion.

7. (AM Ex. 10). Let A be a ring, N its nilradical. Show the following are equivalent:
(i) A has just one prime ideal; (ii) every element of A is either a unit or nilpotent;
(iii) A=N is a �eld.

Ben Blum-Smith and Carlos Ceron 1



Commutative Algebra Atiyah-MacDonald

8. (AM Ex. 11). A ring A is boolean if 8x 2 A, x2 = x. In a boolean ring, show that

(a) 2x = 0.

(b) Every prime ideal p is maximal, and A=p = F2.
(c) Every �nitely generated ideal in A is principal.

9. (AM Ex. 12). Prove that a local ring contains no idempotent 6= 0; 1.

10. Let A be a ring with I, J ideals. Consider F =fP prime ideals j I � P; J * Pg.
Prove that

(
p
I : J) =

\
P2F

P

1.2 Prime Spectrum

This and the next section set up fundamental tools of algebraic geometry. We gain insight
into the geometric objects under study (curves, surfaces, etc.) by looking at the ring
of polynomial functions on those objects. We also reverse the process and start with a
ring and construct an underlying geometric object of which it can be seen as the �ring of
functions." This underlying geometric object is called its prime spectrum. The following
exercises de�ne the prime spectrum. See the comments below on exercise 16c, and also
exercises 26-28, for more context. Also, Exercises 23-24 in Chapter 3 are aimed at �eshing
out the way in which it makes sense to think about the ring elements as �functions" on
the prime spectrum.

1. (AM Ex. 15). Let A be a ring and let X = SpecA be the set of prime ideals of
A. For arbitrary E � A, de�ne V (E) to be the set of all prime ideals containing E.
Check that

(a) If a is the ideal generated by E, then V (E) = V (a) = V (
p
a).

(b) V (0) = X and V (1) = ;.
(c) If (Ei)i2I is a family of subsets of A, then

V

 [
i2I

Ei

!
=
\
i2I

V (Ei)

(d) V (a \ b) = V (ab) = V (a) [ V (b).

These results show that sets of the form V (E) are closed under arbitrary intersection
and �nite union and contain X; ;; thus they obey the axioms for the closed sets of a
topology; it is called the Zariski topology on X = SpecA.

Ben Blum-Smith and Carlos Ceron 2



Commutative Algebra Atiyah-MacDonald

2. (AM Ex. 16). Describe SpecA for A =

(a) Z.
(b) R.
(c) C[x].

Note: The zero ideal is included for technical reasons we will get into later; we
think of it as representing a �generic point" of the complex plane. The elements
of C[x] are naturally interpreted as functions on C; thus in this case, the elements
of the ring are naturally thought of as functions on the prime spectrum of the
ring. We will take this as a cue and, even where it is a less natural interpretation,
we will tend to think of elements of a ring as �functions" on the ring�s prime
spectrum.

(d) R[x].
(e) Z[x].

Note: It might be necessary in proving the classi�cation below of the prime
ideals of Z[x], to refer to Gauss� Lemma, which is not discussed in Atiyah-
MacDonald. It is covered in any standard introductory text on abstract algebra
such as Artin, Algebra.

3. (AM Ex. 17) If f 2 A, let Xf be the complement of V (f) in X = SpecA. (In the geo-
metric picture based on A = k[x1; : : : ; xn], Xf is the complement of a hypersurface...)
Prove the following:

(a) The Xf form a basis for the Zariski topology.

(b) Xf \Xg = Xfg.

(c) Xf = ; , f is nilpotent.

(d) Xf = X , f is a unit.

(e) Xf = Xg if and only if (f) and (g) have the same radical.

(f) X is quasicompact.
Note: The word �compact", meaning, as usual, that every open cover has a
�nite subcover, tends to be replaced with the word �quasicompact", because
this property is possessed by most of the spaces under study, even if they are
not what we are used to thinking of as compact. Fore example, SpecC[x], the
algebraic-geometric model of the topological space C, is quasicompact, even
though it is not compact in the Euclidean topology. There are other more
advanced concepts that do a better job of substituting for the usual notion of
compactness.

(g) More generally, each Xf is quasicompact.
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(h) An open subset of X is quasicompact if and only if it is a �nite union of Xf�s.

4. (AM Ex. 18) Let x 2 SpecA be a point of SpecA the topological space, and let px
be the same element of SpecA except stressing that it is a prime ideal of A.

(a) Show fxg � SpecA is closed if and only if px is maximal.
(b) Show the closure of fxg is V (px).
(c) y 2 fxg , px � py.
(d) X is a T0 space, i.e. any two points are separated by an open set containing one

and not the other.

5. (AM Ex. 21). Let � : A! B be a ring homomorphism. LetX = SpecA; Y = SpecB.
If q 2 Y , then ��1(q) is a prime ideal of A, i.e. a point of X. So � induces a mapping
�� : Y ! X. (This map is called the pullback of �.) Show that

(a) If f 2 A then ���1(Xf ) = Y�(f), and thus that �
� is continuous.

(b) If a is an ideal of A, then ���1 (V (a)) = V (ae).

(c) If b / B, then �� (V (b)) = V (bc).

(d) If � is surjective, then �� is a homeomorphism of Y onto the closed subset
V (ker�) of X. (In particular, SpecA and SpecA=N are naturally homeomor-
phic.)

(e) If � is injective, then ��(Y ) is dense in X. More generally, ��(Y ) is dense in
X , ker� � N.

(f) Let  : B ! C be another ring homomorphism. Then ( � �)� = �� �  �.
(g) Let A be an integral domain with just one non-zero prime ideal p, and let K

be A�s �eld of fractions. Let B = A=p � K. De�ne � : A ! B by �(x) =
(�x; x), where �x is the image of x in A=p. Show that �� is bijective but not a
homeomorphism.

1.3 A¢ ne Varieties

1. (AM Ex. 26). Here Atiyah and MacDonald de�ne MaxSpec (the set of maximal
ideals), noting that in general it does not have the nice functorial properties of Spec,
because maximal ideals don�t always pull back to maximal ideals. But in some cases
it is useful because the elements of MaxSpec can be identi�ed with the points of a
topological space.

Let X be a compact hausdor¤ topological space and let C(X) be the ring of continu-
ous real-valued functions on X. For x 2 X, let mx be the ideal of functions vanishing
at x. It is maximal because it is the kernel of the homomorphism C(X) ! R that
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maps f 7! f(x), and this homomorphism is surjective with image the �eld R. So
x 7! mx is a mapping � of X into ~X = MaxSpecC(X). The problem aims to show
� is a homeomorphism.

(a) Show that � is surjective: in other words, every maximal ideal of C(X) has the
form mx.

(b) By Urysohn�s lemma, the continuous functions separate the points of x. Thus
show � is injective.

(c) Let f 2 C(X). Let Uf = fx 2 X : f(x) 6= 0g. (I feel Atiyah and MacDonald
could have called this Xf to stress the connection with the notation in Exercises
17 and 21.) Let ~Uf = fm 2 ~X : f =2 mg. Show that �(Uf ) = ~Uf . Show that the
open sets Uf , resp. ~Uf , form a basis for the topology of X, resp. ~X, and thus
� is a homeomorphism. (This is a motivating example for algebraic geometry
because it shows that the geometric structure of X can be recovered from the
ring C(X).)

Thus X can be reconstructed as a topological space from C(X).

2. (AM Ex. 27). Let k be an algebraically closed �eld and let

f�(t1; : : : ; tn) = 0

be a set of polynomial equations (indexed by �) in n variables, with coe¢ cients in
k. The set X of all points x = (x1; : : : ; xn) 2 kn which satisfy these equations is an
a¢ ne algebraic variety.

Consider the set of all polynomials g 2 k[t1; : : : ; tn] with the property that g(x) = 0
for all x 2 X. Check that this set is an ideal I(X) in the polynomial ring. It is called
the ideal of the variety X. The quotient ring

k[X] = k[t1; : : : ; tn]=I(X)

is the ring of polynomial functions on X, because two polynomials g; h de�ne the
same function on X if and only if g � h vanishes at every point of X, that is, if and
only if g � h 2 I(X).
Let �i be the image of ti in k[X]. The �i (for 1 � i � n) are the coordinate functions
on X: if x 2 X, then �i(x) is the ith coordinate of x. k[X] is generated as a k-algebra
by the coordinate functions, so is called the coordinate ring (or a¢ ne algebra) of X.

As in Exercise 26, for each x 2 X let mx be the ideal of all f 2 k[X] such that
f(x) = 0; check that it is a maximal ideal of k[X]. Hence, if ~X = MaxSpec(k[X]),
we have de�ned a mapping � : X ! ~X, namely x 7! mx.
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It is easy to show that � is injective: if x 6= y, we must have xi 6= yi for some i
(1 � i � n), and hence �i � xi is in mx but not in my, so that mx 6= my. What
is less obvious (but still true) is that � is surjective. This is one form of Hilbert�s
Nullstellensatz (see chapter 7).

Note: this discussion shows that, as in Exercise 26, the MaxSpec of the ring k[X]
is in bijection with the points of X. If we take a subset of X to be closed if it is
de�ned by the vanishing of some polynomials, we get a topology on X called the
Zariski topology, and this bijection also identi�es this topology with the topology of
MaxSpec k[X]. Thus again we get a way to go back and forth between a topological
space, X, and a ring of functions k[X] on this topological space. The next exer-
cise shows how algebraic maps between two a¢ ne varieties X and Y can be turned
into corresponding ring homomorphisms between their respective rings of functions.
This is the complement (in the concrete situation of a¢ ne varieties) of the process
described in Exercise 21, which shows (in the more general context of an arbitrary
ring) how to take a ring homomorphism and turn it into a continuous map between
topological spaces.

3. (AM Ex. 28). Let f1; : : : ; fm be elements of k[t1; : : : ; tn]. They determine a polyno-
mial mapping � : kn ! km: if x 2 kn, the coordinates of �(x) are f1(x); : : : ; fm(x).
Let X;Y be a¢ ne algebraic varieties in kn; km respectively. A mapping � : X ! Y
is said to be regular if � is the restriction to X of a polynomial mapping from kn to
km.

If � is a polynomial function on Y , then � � � is a polynomial function on X. Hence
� induces a k-algebra homomorphism k[Y ]! k[X], namely � 7! � � �. Show that in
this way we obtain a one-to-one correspondence between regular mappings X ! Y
and k-algebra homomorphisms k[Y ]! k[X].
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